Morphological and Syntactic Case in Statistical Dependency Parsing

نویسندگان

  • Wolfgang Seeker
  • Jonas Kuhn
چکیده

Most morphologically rich languages with free word order use case systems to mark the grammatical function of nominal elements, especially for the core argument functions of a verb. The standard pipeline approach in syntactic dependency parsing assumes a complete disambiguation of morphological (case) information prior to automatic syntactic analysis. Parsing experiments on Czech, German, and Hungarian show that this approach is susceptible to propagating morphological annotation errors when parsing languages displaying syncretism in their morphological case paradigms. We develop a different architecture where we use case as a possibly underspecified filtering device restricting the options for syntactic analysis. Carefully designed morpho-syntactic constraints can delimit the search space of a statistical dependency parser and exclude solutions that would violate the restrictions overtly marked in the morphology of the words in a given sentence. The constrained system outperforms a state-of-the-art data-driven pipeline architecture, as we show experimentally, and, in addition, the parser output comes with guarantees about local and global morpho-syntactic wellformedness, which can be useful for downstream applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Exploiting Synergies Between Open Resources for German Dependency Parsing, POS-tagging, and Morphological Analysis

We report on the recent development of ParZu, a German dependency parser. We discuss the effect of POS tagging and morphological analysis on parsing performance, and present novel ways of improving performance of the components, including the use of morphological features for POS-tagging, the use of syntactic information to select good POS sequences from an n-best list, and using parsed text as...

متن کامل

Adventures in Multilingual Parsing

The typological diversity of the world’s languages poses important challenges for the techniques used in machine translation, syntactic parsing and other areas of natural language processing. Statistical models developed and tuned for English do not necessarily perform well for richly inflected languages, where larger morphological paradigms and more flexible word order gives rise to data spars...

متن کامل

On the Role of Explicit Morphological Feature Representation in Syntactic Dependency Parsing for German

We investigate the question whether an explicit feature representation for morphological features is necessary when parsing German with a fully lexicalized, statistical dependency parser. We use two morphosyntactic phenomena of German to show that while lexicalization does indeed suffice to a large extent when recovering the internal structure of noun phrases, an accurate explicit representatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Linguistics

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2013